INSTRUCTIONS TO CANDIDATES
Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.
The quality of written communication will affect the awarding of marks.
1. A student introduced a pure culture of anaerobic bacteria into a nutrient medium and recorded the numbers of bacteria per cm3. The results are shown in the table.

<table>
<thead>
<tr>
<th>Time / hours</th>
<th>Numbers of bacteria / millions per cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td>6</td>
<td>6.9</td>
</tr>
<tr>
<td>7</td>
<td>13.8</td>
</tr>
<tr>
<td>8</td>
<td>28.0</td>
</tr>
<tr>
<td>9</td>
<td>57.0</td>
</tr>
<tr>
<td>10</td>
<td>113.8</td>
</tr>
<tr>
<td>11</td>
<td>225.0</td>
</tr>
<tr>
<td>12</td>
<td>375.0</td>
</tr>
<tr>
<td>13</td>
<td>440.0</td>
</tr>
<tr>
<td>14</td>
<td>460.0</td>
</tr>
<tr>
<td>15</td>
<td>482.0</td>
</tr>
<tr>
<td>16</td>
<td>484.0</td>
</tr>
<tr>
<td>17</td>
<td>486.0</td>
</tr>
<tr>
<td>18</td>
<td>488.0</td>
</tr>
<tr>
<td>19</td>
<td>488.0</td>
</tr>
<tr>
<td>20</td>
<td>488.0</td>
</tr>
</tbody>
</table>

(a) (i) Calculate the percentage increase in population size between 7 and 8 hours after introduction of the bacteria into the nutrient. Show your working. [2]
(ii) How do you account for the low rate of population growth in the first three hours of the experiment? [2]

(iii) The stage of rapid growth in population size is described as being exponential. What is meant by the term exponential growth? [1]

(iv) Give two reasons which could lead to a decline in population growth in this culture. [2]

(b) What conditions would be needed for the growth of the bacteria in the experiment? [3]
(c) The numbers of bacteria in sea water are commonly monitored. Small samples of the water are taken, diluted and plated onto nutrient agar. The diagram represents the stages of serial dilution to assess the numbers of bacteria in an original sample.

Calculate the number of bacteria per cm³ in the original sample. Show your working. [2]

(d) Describe two precautions which should be carried out to ensure aseptic conditions in this experiment. [2]
2. A diagram of a section of the spinal cord is shown.

(a) (i) Identify structures A-D. [4]

A ..
B ..
C ..
D ..

(ii) Explain why the white matter is white and the grey matter is grey. [2]

..

(b) (i) On the diagram above, draw a sensory neurone, a relay neurone and a motor neurone. The sensory neurone should enter at one side of the spinal cord and the motor neurone should exit on the other side. The neurones should link the receptor to the effector. Label each neurone. [3]

(ii) What is the difference in function between an axon and a dendrite? [1]

..

(Total 10 marks)
3. Some of the metabolic pathways which take place in plant cells are shown in the following diagram.

Disaccharides / Polysaccharides

A

Glucose

Hexose bisphosphate

B

Triose phosphate

Ribulose bisphosphate

Glycerate-3-phosphate

Pyruvate

Acetyl coenzyme A

C

NH₃ nitrate

Amino acids

Proteins

© WJEC CBAC Ltd.
(a)

(i) State the names of the processes in the boxes labelled A, B and C.

A ..

B ..

C ..

(ii) Explain how it is possible for the three metabolic pathways (A, B and C) to take place independently of each other in the same cell.

(iii) A series of reactions which are essential for process B to continue are not shown. Complete the following sentences describing this series of reactions:

A series of reactions which are light .. take place in the .. of the chloroplasts. These reactions produce .. and .. which are needed for process B to continue.

(b) Explain why photosynthesis is essential for the survival of animals on this planet.

(c)

(i) Plant cells also need nitrate ions to synthesise amino acids State one other use of nitrates in plants.

(ii) Why is magnesium required by plant cells?

(Total 14 marks)
4. (a) Define what is meant by the term photoperiodism.

(b) The diagrams show two experiments to study photoperiodism in plants and the effect it has on flowering.

Long day plants only flower if the daylength exceeds a critical value.
Short day plants flower only if daylength is less than a critical value.

Experiment A

Diagram showing a long day plant with a flower produced under a light proof screen, and a plant exposed to short day periods.

Experiment B

Diagram showing both plants exposed to long days. Flowering in both species takes place but ONLY if vascular bundles are successfully connected in the graft.
(i) What conclusions can be made from the results of experiment A? [2]

(ii) Suggest a suitable control for this experiment. [1]

(c) What conclusions can be made from experiment B? [3]

(Total 7 marks)
5. Pacinian corpuscles are receptors found in the skin and consist of a single sensory neurone surrounded by connective tissue. They respond to changes in pressure. The Pacinian corpuscle was stimulated and the electrical activity across the membrane of the sensory neurone was recorded using a microelectrode as shown.

Cathode ray oscilloscope

Microelectrode

Pressure

Pacinian corpuscle

Oscilloscope readings

Potential difference across membrane mV

0

Light pressure

Medium pressure

Heavy pressure

Potential difference across membrane mV

0

+40

+20

0

-20

-40

-60

Potential difference across membrane mV

0

-20

-40

-60

Potential difference across membrane mV

0

-20

-40

-60
(a) (i) Explain the change in potential difference shown by the microelectrode after light pressure was applied. [3]

(ii) Explain the change in potential difference across the membrane shown by the microelectrode when heavy pressure was applied. [6]
(b) Many chemical substances affect the transmission of the nerve impulse across the synapse. Suggest two ways by which excitatory drugs could change activity at the synapse and two ways by which chemicals could inhibit activity at the synapse. [4]

Possible mode of activity of excitatory drugs:

1 ...

2 ...

Possible mode of activity of inhibitory chemicals.

1 ...

2 ...

(Total 13 marks)
6. Complete the following using appropriate scientific terms.

The general name given to glands which produce hormones are .. glands. Hormones are involved in the maintenance of a constant internal environment, this is referred to as .. . If there is a move away from the norm or set point a corrective procedure takes place which returns it to the norm and this is referred to as

Osmoreceptors in the .. of the brain constantly monitor the .. of the blood.

ADH is a hormone that is produced in specialised nerve cells and it is then stored in the .. .

If there is a need for the body to conserve water a nerve impulse causes the release of ADH into the .. which transports it to the target organ.

ADH acts on the cells of the .. where it attaches to .. on the membrane of these cells. This causes protein channels to open and water passes through these channels by .. into the .. of the medulla and then into the blood. A small volume of concentrated .. is produced.

(Total 12 marks)
7. Answer one of the following questions.

Any diagrams included in your answers must be fully annotated.

Either, (a) Describe how the structure of the different regions of the nephron and associated blood supply are adapted to their function. [10]

Or (b) Write an account outlining the similarities and differences in the ways that mitochondria and chloroplasts generate a proton gradient and synthesise ATP. (Diagrams alone are insufficient). [10]